A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity
نویسندگان
چکیده
The Dirichlet problem for the equations of plane elasticity is approximated by a mixed finite element method using a new family of composite finite elements having properties analogous to those possessed by the Raviart-Thomas mixed finite elements for a scalar, second-order elliptic equation. Estimates of optimal order and minimal regularity are derived for the errors in the displacement vector and the stress tensor in L2(f2), and optimal order negative norm estimates are obtained in H=(g2) ' for a range of s depending on the index of the finite element space. An optimal order estimate in L~176 for the displacement error is given. Also, a quasioptimal estimate is derived in an appropriate space. All estimates are valid uniformly with respect to the compressibility and apply in the incompressible case. The formulation of the elements is presented in detail.
منابع مشابه
A Mixed Finite Element Method for Elasticity Problem
This paper describes a numerical solution for plane elasticity problem. It includes algorithms for discretization by mixed finite element methods. The discrete scheme allows the utilization of Brezzi Douglas Marini element (BDM1) for the stress tensor and piecewise constant elements for the displacement. The numerical results are compared with some previously published works or with others comi...
متن کاملMixed finite element formulation enriched by Adomian method for vibration analysis of horizontally curved beams
Abstract: The vibration analysis of horizontally curved beams is generally led to higher order shape functions using direct finite element method, resulting in more time-consuming computation process. In this paper, the weak-form mixed finite element method was used to reduce the order of shape functions. The shape functions were first considered linear which did not provide adequate accuracy....
متن کاملTo appear in Mathematical Methods and Models in the Applied Sciences 12 (2002) NONCONFORMING MIXED ELEMENTS FOR ELASTICITY
We construct first order, stable, nonconforming mixed finite elements for plane elasticity and analyze their convergence. The mixed method is based on the Hellinger– Reissner variational formulation in which the stress and displacement fields are the primary unknowns. The stress elements use polynomial shape functions but do not involve vertex degrees of freedom.
متن کاملMixed finite element methods for two-body contact problems
This paper presents mixed finite element methods of higher-order for two-body contact problems of linear elasticity. The discretization is based on a mixed variational formulation proposed by Haslinger et al. which is extended to higher-order finite elements. The main focus is on the convergence of the scheme and on a priori estimates for the h− and p-method. For this purpose, a discrete inf-su...
متن کاملNonconforming Mixed Elements for Elasticity
We construct first order, stable, nonconforming mixed finite elements for plane elasticity and analyze their convergence. The mixed method is based on the Hellinger– Reissner variational formulation in which the stress and displacement fields are the primary unknowns. The stress elements use polynomial shape functions but do not involve vertex degrees of freedom.
متن کامل